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Abstract
We discuss memory effects in the conductance of hopping insulators due to slow
rearrangements of structural defects leading to the formation of polarons close to the electron
hopping states. An abrupt change in the gate voltage and corresponding shift of the chemical
potential change the populations of the hopping sites, which then slowly relax due to
rearrangements of structural defects reducing the density of states. As a result, the density of
the hopping states becomes time dependent on a scale relevant to the rearrangement of the
structural defects, leading to excess time-dependent conductivity.

1. Introduction

A peculiar transport memory effect has been observed in many
hopping insulators [1–5]: shifting the system either from the
equilibrium or from its steady transport state produced by,
e.g. a sudden change of the gate voltage, δVg, increases the
conductance σ of the system, the effect not depending on
the sign of the change. The σ(δVg) dependence shows a
characteristic memory cusp (see [6] for experimental details
and a review) which may persist for a long time. Explanations
of this appealing observation can be grouped into two major
classes which are often referred to as intrinsic and extrinsic
mechanisms. The former one attributes memory effects to
slow dynamics of strongly correlated electrons subject to
quenched disorder and thus forming a Coulomb glass [7–9].
The connection between the features of a glassy phase and the
formation of a Coulomb gap was revealed in [10], suggesting
that within the locator approximation the correlated electronic
system maps to the Sherrington–Kirkpatrick spin glass. A
direct relation between the long range electron correlations
and the formation of the exponential distribution of deep
electron states, which is characteristic of glassy systems, was
also demonstrated in [11]. In a Coulomb glass, memory
effects reflect delayed formation of the Coulomb gap in the
Efros–Shklovskii (ES) regime of the variable range hopping

(VRH) [12]. Recently we have demonstrated how ‘slow’
many-electron fluctuators can be formed in a Coulomb system
and analyzed their influence on the 1/ f noise [13]. Such
fluctuators can also lead to slow relaxation and memory effects.

An extrinsic scenario assumes that electronic memory
effects are caused by slowly relaxing atomic configurations
thus influencing conducting channels and was first proposed
in [14] to explain the G(Vg)-cusp in granular Au films. A
possibility that polaron effects may be responsible for slow
relaxation in hopping conductors was also discussed in [5, 15].

The Coulomb glass is formed well below the temperature
T0 entering the ES law for the VRH as

σ = σ0 e−(T0/T )1/2
. (1)

Experiment [16] has shown that in this regime the 1/ f noise
intensity is strongly correlated with T0, proving the electronic
nature of the low-frequency noise. However, the conductance
memory cusps and their relaxation (aging) were observed in the
systems which do not exhibit ES behavior, but are apparently
subject to structural disorder [6, 17]. Various memory effects
were observed in metallic granular structures [2, 5, 14], which
also possess a high degree of structural disorder. This calls
for careful examination of whether the memory effects and the
‘two-cusps’ G(Vg)-dependence [6] can be explained as a result
of slow relaxation in the structurally disordered atomic matrix.
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In this paper we present a model that may serve as
a step towards a quantitative description of memory cusps
based on an extrinsic mechanism. We show that due to slow
relaxation of atomic structure, polaron clouds, which form
near the hopping sites, suppress the bare electron density of
states (DOS). Changing gate voltage shifts chemical potential,
removes the polaron screening and, thus, increases the hopping
conductivity. As the atomic structure adjusts itself with time to
the new position of chemical potential, the conductivity relaxes
to its quasi-stationary magnitude.

Atomic structural relaxation is attributed to two-level
systems (TLSs) [18, 19]. The TLS model successfully
describes thermodynamics and kinetics of amorphous solids
at low temperature. It suggests that there exist atoms or
groups of atoms undergoing tunneling motion that can be
characterized by the broad universal distribution of their
parameters. Since all materials where the memory effects
in conductivity were observed are strongly disordered, one
would expect that TLSs should exist there similarly to other
glasses and disordered materials [19]. These two-level systems
interact with conducting electrons because they possess a
dipole moment. In this manuscript we examine the effect of
electron–TLS interaction on the non-equilibrium conductivity.
We show that this interaction results in the non-equilibrium
behavior of conductivity which is qualitatively equivalent to
the experimental observations, i.e. increase in conductivity
after gate voltage application with its subsequent logarithmic
relaxation to the equilibrium value. This theory uses the
previous work [20, 21], where the similar non-equilibrium
behavior of the dielectric constant in amorphous solids [21, 22]
has been explained using the TLS interaction. Since TLS
parameters are quite universal from material to material [19],
we can use these parameters for quantitative estimates which
show that our theoretical predictions are consistent with
existing experimental data.

The paper is organized as following. In section 2 we
define the conditions where our consideration is applicable,
i.e. electron–electron interaction can be neglected, while
electron–TLS interaction is significant. In section 3 the non-
equilibrium behavior of electron density of states caused by
their interaction with TLSs is derived. In section 4 the
non-equilibrium behavior of conductivity is described and
compared with the experimental data. The results of the
manuscript are summarized in section 5.

2. When can the electron–electron interaction be
neglected?

In this manuscript we ignore the effect of electron–electron
interaction on the non-equilibrium behavior of conductivity.
This is possible only under specific conditions when the
electronic interaction is weak compared to their characteristic
energies and there is no slow relaxation within the electronic
subsystem. According to various considerations [12, 13], the
slow relaxation in the electronic subsystem can take place only
below some critical temperature TG, which is defined as the
electronic glass transition temperature in [12]. This transition

temperature is defined by the Coulomb gap energy

kBTG ∼ �C. (2)

Below we set kB = 1.
The Coulomb gap depends on the electronic density

of states g0, dielectric constant κ , system dimension d
and electron localization radius a. We believe that the
dimensionless parameter χ = g0ad−1e2/κ = g0ad T0 is small,
i.e.

χ = g0ad T0 < 1, (3)

where the characteristic temperature T0 in the Efros–Shlovskii
hopping conductivity equation (1) is given by

kBT0 ∼ e2

κa
. (4)

Then the Coulomb gap is defined as

�C = T0χ
1

d−1 . (5)

If temperature exceeds the Coulomb gap energy then electronic
relaxation is fast. It is also useful to notice that for
electronic excitations with typical energy E their characteristic
interaction UE ≈ e2(g0 E)

1
d is smaller than the energy E until

E > �C and the condition UE ≈ E serves as the definition
of the Coulomb gap. So when T > �C the interaction of
representative excitations with energy E � T is less than their
energy so it can be treated as weak.

If the system is near metal dielectric transition [16] and
the electron localization radius is large, then one can possibly
have the opposite limit χ = g0ad−1e2/κ > 1, This is the case
which takes place in silicon MOSFETS investigated in [16].
Under those conditions only the Efros–Shklovskii variable
range hopping law equation (1) is observed. We believe this
is not the case for the systems of interest [1–5], where different
conductivity behavior is observed that is closer to the Mott’s
variable range hopping law, which suggests χ < 1 [23].

Therefore it is not possible to interpret the memory effects
in conductivity at KBT > �C without the involvement of
electronic interaction with extrinsic slowly relaxing defects
like TLSs. Our theoretical study is restricted to this ‘high
temperature’ situation. Since the temperature T0 can change
within the range of 1–100 K [16] our assumption that the
experimental temperature 4 K exceeds the Coulomb gap energy
equation (5) does not conflict with common sense. We
believe that at least some of the experiments [1–5] have been
performed in this temperature range. Unfortunately, existing
experimental data do not permit us to answer the question as
to whether the experimental temperature is above or below the
Coulomb gap. Although the absence of the Efros–Shklovskii
conductivity temperature dependence equation (1) [3] agrees
with our assumption that the electronic interaction is not
important, this does not prove the absence of Coulomb gap and
electronic glassy state [23]. We therefore suggest additional
experiments that can help to investigate the Coulomb gap in
the system which is a necessary prerequisite of the Coulomb
glass state. Such experiments can be made, for instance,
using scanning tunneling microscopy [25]. If the Coulomb
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Figure 1. (a) Polaron formed by an electron site and an adjacent
TLS; (b) transitions of the TLS between its states shift the electron
energy with respect to the Fermi level and can bring it outside the
hopping band having width εh.

(This figure is in colour only in the electronic version)

gap in the density of electronic states is not observed at
experimental temperatures, then one should expect that the
extrinsic mechanism is in charge for the memory behavior in
conductivity.

3. Electron density of states affected by electron–TLS
interaction

Our consideration is based on the concept of ‘two-level
systems’ (TLSs) [18] taking as its central hypothesis the
assumption that in a system with quenched disorder a certain
number of atoms (or groups of atoms) can occupy one of
(at least) two equilibrium positions. These atoms therefore
move in a double-well potential created by their environment
and characterized by the asymmetry energy (difference in
energy minima) and by the height and the width of the
separating barrier. The atoms comprising the TLSs change
their configuration either by tunneling through- or by thermally
activated hopping over the barrier. Randomness in the heights
and widths of the TLS barriers gives rise to an exponentially
broad distribution of structural relaxation times.

A localized electric charge polarizes the neighboring
TLSs, which thus acquire an electric dipole moment, µ, and
screen the original bare charge, see figure 1(a). The interaction
energy of TLSs with the localized charge is estimated as

U(r) ∼ e(µ · r)/κr 3, r � a, (6)

where r is the vector connecting the center of this TLS with
the position of localized electron state, a is the localization
length and κ is the material dielectric constant. Polarized TLSs
form a polaron cloud around the localized electron and create a
polaron gap for electronic excitations, implying that states with
the single-electron energy φ <

∑
i U(ri) cannot be excited

any more.
In what follows we will find the correction to the

electronic DOS, g0, due to electron–TLS interactions in the
lowest approximation in the TLS density. To this end we
first determine the change in DOS due to a single neighboring
TLS characterized by the given energy splitting, E , and the
relaxation time, τ . The target correction to the electron DOS is
then obtained by averaging of the single TLS contribution with
respect to all possible neighboring TLS positions and E and τ .

Consider the correction to the density of electronic states
with some energy ε caused by the electron–TLS interaction.
Since the concentration of TLS is small we can assume that
only one most closely located TLS is important, while the
probability that two TLSs are significant is much smaller than
unity. Then we consider electrons interacting with the single
TLS using the standard Hamiltonian

Ĥpair = φn + Unσ z + �σ z, (7)

where n = 0, 1 is the electron population operator, the spin
1/2 z-projection operator σ z = ±1/2 describes two states of
the TLS, φ is the electronic energy in some localized state, � is
the energy of the two-level system and U is the charge–dipole
interaction of the electron with the TLS. In thermal equilibrium
the electron excitation energy ε = φ + Uσ can take values
φ ± U/2 with the probabilities defined by the equilibrium
Boltzmann factors

P+ =
exp

(− �
2T

)+ exp
(

−�/2−U/2−φ

T

)

exp
(−�

2T

)+ exp
(−�/2−U/2−φ

T

)
+exp

(
�
2T

)+exp
(

�/2+U/2−φ

T

) ,

P− =
exp

(
�
2T

)+ exp
(

�/2+U/2−φ

T

)

exp
(−�

2T

)+ exp
(−�/2−U/2−φ

T

)
+ exp

(
�
2T

)+ exp
(

�/2+U/2−φ

T

) ,

(8)

respectively. The time-dependent correction to the density of
states taken at a certain time t can be associated only with those
TLSs which have relaxation time τ longer than the time of the
experiment t . That time must also have an upper restriction by
some maximum TLS relaxation time τmax which serves as the
upper cutoff in the TLSs’ logarithmically uniform distribution
over their relaxation times P(�, τ) = P0
(τmax − τ )/τ .
Within the logarithmic accuracy, one can account for the above
constraints introducing integrated time-dependent TLS density
at t < τmax as

P(t) = P0 ln(t/τm). (9)

Here τm is the characteristic minimum time defined by the field
sweep rate. This expression clearly demonstrates the nature of
the logarithmic time dependence of TLS contribution to the
electronic density of states similarly to previous work [20].

The correction to the density of states of the particular
electron with energy ε caused by its interaction with
neighboring TLSs can be expressed as

δgs(ε) = 1

V

∑

i j

(
P+

i j δ(ε − φi − Ui j/2)

+ P−
i j δ(ε − φi + Ui j/2) − δ(ε − φi)

)
, (10)

where the sum is taken over all pairs made of an electron i and a
TLS j characterized by energies φi and � j , respectively, Ui j is
their interaction and V is the system volume. Probabilities P±

i j
are defined using equation (8) with the substitutions φ = φi ,
� = � j and U = Ui j . The summation in equation (10) can be

3
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replaced with integration over electron and TLS energies and
the distance R between electron and TLSs. This yields

〈δg(ε)〉 = g0 P(t)
∫

dd R
∫ ∞

−∞
dφ

∫ ∞

−∞
d�

×
〈
(1 + e− ε

T )δ(ε − φ − U/2)

1 + e− ε
T + e

�
T (1 + e− ε−U

T )

+ (1 + e− ε
T )δ(ε − φ + U/2)

1 + e− ε
T + e

−�
T (1 + e− ε+U

T )
− δ(ε − φ)

〉

, (11)

where g0 is the electronic density of states at energy ε taken
in the absence of interaction with TLSs and d is the system
dimension. Remember that U = e(µ, R)/(κ R3) is the dipole
charge interaction between electron and TLS possessing dipole
moment µ and averaging is performed with respect to random
directions of a TLS dipole moment. After integration over
electronic energy φ and TLS energy � in equation (11) we
obtained

〈δg(ε)〉 = g0 P(t)T

×
∫

dd R
〈

ln

(
cosh(ε/T ) + 1

cosh(ε/T ) + cosh(U/T )

)〉

. (12)

The most important electrons are those contributing to the
hopping conductivity. These electrons have energy ε of order
of the hopping energy εh which always exceeds the thermal
energy. Therefore assuming ε > T one can approximate
the logarithm under the integral in leading order in 1/T
as ln(

cosh(ε/T )+1
cosh(ε/T )+cosh(U/T )

) ≈ −||U |−ε|
T θ(|U | − ε). The final

expression for the correction is similar to the one used in
earlier works [20, 24] for the Coulomb gap and the dipole
gap in the density of TLS states. However, our derivation
of the correction is more general because our expression
equation (12) can be used at arbitrary temperature while the
earlier derivation is valid only in the low temperature limit.
Finally the correction to electronic density of states can be
expressed as

δg(ε, t) ≈ −2g0 P0L
∫

dr [U(r) − ε] θ [U(r) − ε]

≈ −8π

3

(
eμ̄

κ

)3/2 g0 P0√
ε

ln

(
t

τm

)

, (13)

where μ̄ is the typical dipole moment of a TLS and τm

is some characteristic minimum time associated with the
gate voltage application. Only electrons with energy ε ∼
εh = T 3/4a−3/4g−1/4 influence the hopping conductance. We
believe that at ε ∼ εh ∼ 30 K equation (13) is still applicable.

4. Analysis of experimental data

Equation (13) can be used to interpret the experimental data
only if all relevant TLSs were initially out of equilibrium.
In other words, all electrons contributing to hopping must be
surrounded by non-equilibrium TLSs. The equilibrium can
be broken due to the application of the gate voltage. This
can be realized when all electrons contributing to hopping
are ‘newcomers’, i.e. they are brought to the vicinity of the
Fermi level by application of the gate voltage, Vg. For
that, the shift of the Fermi energy by the gate voltage must

exceed the hopping energy εh. Then those electrons break the
equilibrium in their neighboring TLSs randomly changing their
energies by the scale of their interaction with those TLSs. All
relevant TLSs with energy of order of εh coupled to entering
electrons (or holes) by an interaction having the same order
of magnitude, experience the jump in their energy induced by
entering electrons. This moves them all out of equilibrium.
Their relaxation leads to the polaron shift of electron energy
out of the Fermi energy thus reducing the conductivity. Thus
the condition �EF ≈ εh defines the width of the cusp in the
non-equilibrium conductivity as a function of the gate voltage.
One can show using [7] that under those conditions the shift
of TLS energy induced ‘directly’ by the gate voltage is still
smaller than εh because of the small TLS dipole moment
μ̄ ≈ 2×10−18 erg1/2 cm3/2 [19]. We can compare this estimate
with the experiment extracting εh from the expression for the
conductivity, σ ∼ σ0 exp(−εh/T ). Let us put σ0 equal to the
minimal metallic conductivity (∼10−4 �−1) and use available
experimental results of [3] for the representative sample with
resistance of 3.8 M� at T = 4.1 K. The assumption about
σ0 is justified by the experimental observations (see [29] and
references therein).

Then the hopping energy is εh = T ln(σ0/σ) ≈ 2.1 ×
10−3 eV. This value agrees qualitatively with the shift of
the Fermi energy 3–5 meV associated with the value of the
gate voltage Vg at which the memory cusp is affected as was
estimated earlier in [7]. Thus the suggested mechanism agrees
with the experimental observations.

The correction to the conductivity can be estimated as
[(ε/T )δg(ε, t)/g0]ε=εh . In this way we get

δσ (δVg, t)

σ
	 P0eμ̄

κ

[
eμ̄

κεh

]1/2

ln

(
t

τm

)

ln
σ0

σ(T )
. (14)

The time-dependent factor L ≡ ln(t/τm) contains the
measurement time as t and the inverse sweep rate, τm � τh =
τ0 e(TM/T )1/4

, and affects only the amplitude of the peak, but
not its shape. Here τh is the characteristic time of the variable
range hopping and the pre-exponential factor τ0 is of the order
of 1 ps at experimental temperatures. This can explain the
experimentally observed independence of the dip shape on the
sweep rate [7].

Similar considerations apply to the ES VRH with the
proper renormalization of the hopping parameters. Now the
typical energy scale optimizing the hopping rate is εh =
(T0T )1/2, where T0 = βe2/κa, τh = τ0 e(T0/T )1/2

, and β ≈ 2.8
is a numerical factor [23].

Let us now discuss the available experimental data in the
light of the above theory. According to our previous estimates,
εh ≈ 2.1 × 10−3 eV. The typical dipole moment can be
estimated as μ̄ ∼ 2 × 10−18 erg1/2 cm3/2, which is close to
typical dipole moments of TLSs in glasses [19, 20].

We are not aware of independent measurements of the
TLS density, P0, in the materials under consideration. In
principle, this quantity can be determined, e.g. by measurement
of the low-frequency dielectric constant at T � 1 K, where it
should depend on the temperature logarithmically, the slope of
the logarithmic dependence being P0μ

2/κ . This dimensionless
quantity turns out to be almost the same, ≈0.3 × 10−3, in

4
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many materials with strong quenched disorder, see [19–22]
and references therein. Apparent universality of this quantity
in such materials was attributed to the interaction between
TLSs [21, 26]. Assuming that the material studied in [3]
belongs to the same ‘universality class’ as materials with strong
quenched disorder, we estimate P0 as 0.6 × 1033 erg−1 cm−3,
as in most oxide glasses [19]. We set κ ∼ 10 following [9].

Now we can check our assumptions regarding the 3D
arrangement of TLSs forming the polarons and regarding the
lowest approximation in the TLS density. Estimating the
polaron radius, r̄ , as the length at which the electron–TLS
interaction, eμ/κ r̄ 2 is comparable with the typical electron
energy εh we get r̄ ≈ 1 nm which is much less than the
sample thickness �. The average number of the TLSs forming
polarons, i.e. located within the polaron radius and having
E � εh, N ∼ (4π/3)P0εhr̄ 3, turns out to be ∼10−2, i.e. much
less than 1. Thus the lowest approximation in the TLS density
is valid.

Using the above estimates and equation (14) we get
δσ (t)/σ ≈ 0.02 ln(t/τm). Thus we predict a logarithmic
relaxation rate of conductivity r = d ln(σ )/d ln(t) ≈ 0.02.
According to the experimental data [3, 8] at T = 4.1 K and
for sample thickness equal to 10 nm the conductivity changes
by about 8% during two decades in time so we can estimate it
as r ≈ 0.015. Thus our theory agrees with experimental data
reasonably well.

5. Discussion and conclusion

We have presented a simple model of slow dynamics
of hopping conductance in structurally disordered hopping
insulators. It takes into account rearrangements of the dynamic
structural defects, TLSs, leading to the formation of polarons
close to the electron hopping states. The model qualitatively
explains both the logarithmic relaxation and memory effects,
and provides quantitatively reasonable estimates of the time-
dependent non-equilibrium change in conductivity, δσ (Vg, t)
(see, e.g. [6], figure 2).

The dependencies of this quantity on different parameters—
electron concentration, controlled by the gate voltage; mag-
netic field [3] and various protocols of breaking down the
system equilibrium—are encoded in the logarithmic factors
ln(σ/σ0) and ln(t/τm) while the temperature dependence en-
ters as a power law through the energy εh: δσ ∝ ε

−3/2
h . That

leads to the main temperature dependence ∝T −9/8 and ∝T −3/4

for the Mott and ES VRH, respectively. Thus our theory ex-
plains the fast increase of the non-equilibrium raise of conduc-
tivity with decreasing temperature.

The following note is in order. We demonstrated that
‘slow’ excitations induced by structural disorder can indeed
be responsible for the double-dip memory effect in hopping
semiconductors in analogy to those in glasses [21, 22]. The
effect we considered is due to polarons formed by the structural
excitations. Yet, one should bear in mind that a similar
polaron effect appears in pure electronic models. In particular,
the polarons formed from pair excitations were considered
in [27]. In its turn, ‘electronic polarons’ can be formed from
slow relaxing electronic ‘aggregates’ discussed in [13]. The

presence of structural TLSs in InO films is indirectly supported
by the fact that the low-frequency noise in these materials does
not increase significantly under the disorder-driven metal-to-
insulator transition [28]6.

Further experimental verification is necessary to decide
whether the non-equilibrium behavior is associated with the
extrinsic or intrinsic model. A regular approach to attain
this goal should be based on techniques affecting differently
the structural and electronic degrees of freedom. One of
the possibilities is measurement of the AC linear response
such as simultaneous measurements of the attenuation and
velocity of the acoustic waves in transverse magnetic fields.
The expected effect is caused by transitions in structural
two-well configurations, while the electronic transitions are
strongly suppressed by the magnetic field [30]. Alternative
experimental verification can be performed using scanning
tunneling microscopy [25] as described in section 2.
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Phys.—JETP 51 199 (Engl. Transl.)

[25] Butko V Y, DiTusa J F and Adams P W 2000 Phys. Rev. Lett.
84 1543

[26] Yu C C and Leggett A J 1988 Comments Condens. Matter
Phys. 14 231

[27] Efros A L and Shklovskii B I 1975 J. Phys. C: Solid State Phys.
8 L49

Efros A L 1976 J. Phys. C: Solid State Phys. 9 2021
[28] Cohen O and Ovadyahu Z 1994 Phys. Rev. B 50 10442

Cohen O, Ovadyahu Z and Rokni M 1992 Phys. Rev. Lett.
69 3555

[29] Polyakov D G and Shklovskii B I 1995 Phys. Rev. Lett. 74 150
[30] Drichko I L et al 2000 Phys. Rev. B 62 7470

6

http://dx.doi.org/10.1088/0022-3719/17/26/013
http://dx.doi.org/10.1103/PhysRevB.61.6692
http://dx.doi.org/10.1103/PhysRevB.75.174205
http://dx.doi.org/10.1080/14786437208229210
http://dx.doi.org/10.1007/BF00660072
http://dx.doi.org/10.1007/BF00751512
http://dx.doi.org/10.1103/PhysRevLett.80.4689
http://dx.doi.org/10.1103/PhysRevLett.84.1543
http://dx.doi.org/10.1088/0022-3719/8/4/003
http://dx.doi.org/10.1088/0022-3719/9/11/012
http://dx.doi.org/10.1103/PhysRevB.50.10442
http://dx.doi.org/10.1103/PhysRevLett.69.3555
http://dx.doi.org/10.1103/PhysRevLett.74.150
http://dx.doi.org/10.1103/PhysRevB.62.7470

	1. Introduction
	2. When can the electron--electron interaction be neglected?
	3. Electron density of states affected by electron--TLS interaction
	4. Analysis of experimental data
	5. Discussion and conclusion
	Acknowledgments
	References

